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lattice: the Kapitza-Dirac scattering and temporal
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We study 87Rb Bose-Einstein condensation (BEC) loading into the pulse of the one-dimensional (1D)
optical lattice experimentally. The lattice is turned on abruptly, held constant for a variable time, and
then turned off abruptly. The measurement of the depth of the optical lattice is obtained by Kapitza-Dirac
scattering. The temporal matter-wave-dispersion Talbot effect with 87Rb BEC is observed by applying a
pair of pulsed standing waves (as pulsed phase gratings) with the separation of a variable delay.
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Bose-Einstein condensation (BEC) was first demon-
strated in 1995[1,2], creating an explosion of interest in
previously unattainable many-body quantum phenom-
ena. Subsequently, optical lattices[3,4] constitute a natu-
ral extension of the experimental efforts to periodic po-
tentials and have opened up new avenues for research.
Optical lattices have allowed us to go beyond the physics
of a weakly interacting Bose gas and in fact bring the
system into a regime where several challenging phenom-
ena of strongly correlated systems of condensed mat-
ter physics can be observed. In addition to the fasci-
nating physics of strongly correlated quantum matter,
BECs in optical lattice also offer many new possibili-
ties for quantum information processing, especially due
to the large size of the quantum registers that can be
realized. So far, experiments using periodic potentials
have focused mainly on Bragg scattering[5,6] and quan-
tum phase transition properties, involving such intriguing
concepts as number squeezing[7] and the Mott insulator
transition[8,9]. Some interesting work has also been done
on superfluid properties of BECs in optical lattices[10,11].

Coherent manipulation of atomic momentum states is
the primary goal of atom optics, and the standing wave
light (optical lattice) with associated stimulated light
forces is usually used as a primary method of achieving
this goal. Bragg scattering is the simplest example of co-
herent momentum transferring to atoms by the standing
wave light. Bragg scattering process requires energy and
momentum to be conserved. To avoid Bragg scattering
atoms into the wrong final states, the Fourier width of the
applied light pulsed with length τ must be smaller than
the separation between momentum states τ ≫ π/4ωrec,
where ωrec is the recoil frequency. Comparing with the
Bragg regime, Kapitza-Dirac (or Raman-Nath) scatter-
ing can be treated with τ ≪ π/4ωrec, which is limited
to short interaction time[12,13]. In this limit, the Fourier
width of the pulse is larger than the separation between
adjacent momentum states, and atoms can be scattered
into higher order momentum states. This is equivalent to

that the only effect of the pulse is to impose a spatially
periodic phase modulation on the atomic wave function,
with no effect on its amplitude profile. In this letter, we
report on experiments with BEC loaded into the pulse
of one-dimensional (1D) optical lattices. The lattice is
turned on abruptly, held constant for a variable time,
and then turned off abruptly. In particular, we mea-
sure the depths of the optical lattices through Kapitza-
Dirac scattering, and then the temporal wave-matter-
dispersion Talbot effect, where a pulsed phase grating
formed by pulsed optical standing wave is applied to a
cloud of BEC, is demonstrated experimentally.

The experiment is performed with a condensate of up
to 1 × 105 atoms in the F = 2,mF = 2 state of 87Rb,
without a discernible noncondensed component, formed
in a quadrupole-Ioffe configuration trap[14] with trapping
frequencies of 2 × 23.9 Hz in the axial and 2 × 236.6 Hz
in the radial direction[15]. The 1D optical lattice is
formed by a retro-reflected laser beam along the axial di-
rection whose frequency and amplitude can be controlled
by an acousto-optic modulator (AOM). The lattice beam
is from a single-frequency diode laser, which passes a
standard polarization maintaining single-mode fiber, and
has a power of about 8.5 mW. It is detuned about 81 GHz
to the red of the D2 line, and is focused into a spot with
an intensity full-width at half-maximum (FWHM) of
36 µm. The recoil energy is Erec/h̄ = 2π × 3.7709 kHz
for 87Rb. The condensate is located in the focus of the
lattice beam.

The retro-reflected laser beam forms a standing wave,
which acts on the atoms via the light-shift to produce a
sinusoidal potential

V (x) = V0 [1 + cos (2kLx)] , (1)

where 2V0 is the lattice depth, and kL is the wavenumber
of the lattice beam. Given the initial atomic wavefunc-
tion |ψ0(t = 0)〉, the atomic wavefunction immediately
after the lattice square wave pulse with time interval ∆t
is given as[12,13]
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where Jn is Bessel function. It is shown clearly that the
effect of the pulse optical lattice is to impose a spatially
periodic phase modulation on the atomic wave function.
Thus the BEC breaks up into momentum components
with 2nh̄kL (n is integer) and the states with momentum
of 2nh̄kL are populated with probability[16]

Pn = J2
n

(

V0∆t

h̄

)

. (3)

When the interval time ∆t equals 2.4048 h̄/V0,
J0(2.4048) = 0 and the order n = 0 momentum
component first vanishes. The lattice depth 2V0 =
2 × 2.4048h̄/∆t0 can be found by measuring the in-
terval time ∆t0 at which the order n = 0 first vanishes.

To measure the lattice depth using the Kapitza-Dirac
scattering, the optical lattice is applied to the BEC and
we keep it on for a variable length of the interval time
∆t, and then the lattices and the trap are simultaneously
turned off. After expanding freely for 14 ms time-of-
flight (TOF), the relative population of the momentum
components is imaged by resonant absorption imaging.
The experimental timing sequence is shown in Fig. 1(a).
Figure 1(b) shows the time evolution of BEC held in
the optical lattices. We measured the atom number of
the order n = 0. In Fig. 1(c), we plot N0/Nt (Nt is
the total atom number) versus duration time ∆t of the
optical lattice, and find the n = 0 order first vanishes
when the lattice duration time ∆t0 is 3 µs. Then the
corresponding lattice depth is 67.7Erec. For an atomic
polarizability α and a single-beam lattice intensity I,

Fig. 1. (a) Experimental timing sequence; (b) TOF images of
Kapitza-Dirac scattering as a function of lattice duration time
∆t; (c) scattering ratio for the scattering order n = 0. The
data are fitted with J2

0(at), with fitting parameter a = 0.8.

the lattice depth is also given as 2V0 = αI/(2cε0). How-
ever, the actual lattice beam power within the glass cell,
which mainly determines the effective lattice depth, can-
not be measured directly because it is related to the ac-
tual beam waist, the lattice beam alignment, and the
spatial overlap with the lattice beams. So it is necessary
to measure the depths of the optical lattices experimen-
tally. The procedure for measurement of optical lattices
can also be used to judge the alignment of the optical
lattices with respect to the BEC.

We subsequently investigate the temporal matter-
wave-dispersion Talbot effect. The Talbot effect has
been studied extensively[17,18]. In the atom optics, where
light waves are replaced by matter waves, Talbot effect
that periodic reconstruction of the matter-wave front
occurs at multiples of the Talbot distance LT in the
paraxial approximation has been first demonstrated in
1995[19]. The temporal atom optical Talbot effect in
the sodium BEC using a standing wave light grating
has been demonstrated[20], for which a pulsed standing
wave was applied to BEC in the Kapitza-Dirac scatter-
ing regime. The self-imaging of the grating was mea-
sured with a second standing wave light grating pulse.
We will show that the matter-wave front is reconstructed
temporally at multiples of LT when a pulsed phase grat-
ing formed by pulsed optical standing wave is applied to
87Rb BEC. In experiment, the phase grating with peri-
odicity d = λL/2 is formed by a standing wave of light
with wavelength λL, and 87Rb BEC is the ultimate co-
herent atomic source. The Talbot time can be defined
as TT = LT/v = 2d2/(λLv), where v is the atomic ve-
locity. According to the dispersion relation of matter
wave En = 4n2Erec, the Talbot time can be rewritten as
TT = 2πh̄/(4Erec). So TT = 66 µs for 87Rb.

The experimental sequence for the temporal matter-
wave Talbot effect is shown in Fig. 2(a). A pair of pulsed
standing waves (as phase gratings) separated by a vari-
able delay time T is applied to BEC, then the standing
wave and the magnetic trap are simultaneously turned
off. The duration time of the two pulsed standing waves
is 300 ns. Owing to the small momentum spread of the
BEC and short pulse time, the system is in the Kapitza-
Dirac scattering regime. The atoms are diffracted into
momentum states 2nh̄kL, after application of the first
pulsed grating. According to Eq. (2), the atomic wave-
function immediately after the first pulse at t = 0 can be
written as
ψ

(
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where ψ (x, t = 0−) is the atomic wavefunction be-
fore the first pulse lattice, and An (t = 0+) =
exp(−iV0∆t

h̄
)(−i)nJn(V0∆t

h̄
). After the first pulse, the

atomic wavefunction evolves freely. So each diffracted
momentum state acquires the phases during the evolution
as exp(−iEnt/h̄) (En = 2πn2h̄/TT). The wavefunction
(t > 0) can be expressed as
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It is apparent that the wave front can be reconstructed
temporally at multiple of TT, i.e., ψ(x, t = lTT) =
ψ(x, t = 0+) (l is a positive integer).

In order to analyze the temporal evolution of the wave-
function and observe the Talbot effect, a second pulsed
standing wave after a delay time T is applied. Figure
2(b) shows images resulting from two pulses for various
pulse internal time T . We can find that the images are
located symmetrically about T = 33 µs, and the image at
T = 66 µs is the replica of the image at T = 1 µs, indicat-
ing the wave matter front is reconstructed at the Talbot
time. The phenomena that all diffraction orders disap-
pear at T = 33 µs can also be found in Fig. 2(b), which
can be easily explained. For the case when T = TT/2,

Fig. 2. (a) Experimental timing sequence for the temporal
matter-wave Talbot effect. (b) TOF images of BEC result-
ing from a pair of pulsed gratings with various time delays
between pulses.

the wavefunction using Eq. (5) can be written as
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The atomic wavefunction at T = TT/2 is just like
that the potential of the pulse lattice with V (x) =
V0[1 − cos(2kLx)] acts on the original atomic wavefunc-
tion. Therefore the effect of the second pulse at T =
TT/2 cancels the spatial variation produced by the first
pulse grating, resulting in the disappearance of the all
diffraction orders.

In conclusion, we use Kapitza-Dirac scattering as an
accurate way to calibrate the lattices depth. We also
demonstrate the temporal matter-wave-dispersion Talbot
effect by applying a pair of pulsed phase gratings to a Rb
BEC. These works will be helpful for our future work of
manipulating the Bose-Fermi mixture gas by optical lat-
tices.

This work was supported in part by the National Natu-
ral Science Foundation of China for Distinguished Young
Scholars (No. 10725416), the National Basic Research
Program of China (No. 2006CB921101), the National
Natural Science Foundation of China for Excellent Re-
search Team (No. 60821004), and the National Natural
Science Foundation of China (No. 60678029).

References

1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E.
Wieman, and E. A. Cornell, Science 269, 198 (1995).

2. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van
Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle,
Phys. Rev. Lett. 75, 3969 (1995).

3. P. S. Jessen and I. H. Deutsch, Adv. At. Mol. Opt.
Phys. 37, 95 (1996).

4. L. Qi, Z. Yang, X. Gao, and Z. Liang, Chin. Opt. Lett.
6, 279 (2008).

5. M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,
K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys.
Rev. Lett. 82, 871 (1999).

6. D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. In-
ouye, S. Gupta, D. E. Pritchard, and W. Ketterle, Phys.
Rev. Lett. 83, 2876 (1999).

7. C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda,
and M. A. Kasevich, Science 291, 2386 (2001).

8. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and
I. Bloch, Nature 415, 39 (2002).

9. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

10. S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, and M.
Inguscio, Phys. Rev. Lett. 86, 4447 (2001).

11. F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F.
Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio,
Science 293, 843 (2001).

12. G. K. Campbell, “87Rubidium Bose-Einstein condensates
in optical lattices”, PhD. Thesis (Massachusetts Institute
of Technology, 2006).

13. S. Gupta, A. E. Leanhardt, A. D. Cronin, and D. E.
Pritchard, C. R. Acad. Sci. 2, 479 (2001).

14. D. Xiong, H. Chen, P. Wang, X. Yu, F. Gao, and J.
Zhang, Chin. Phys. Lett. 25, 843 (2008).

15. P. J. Wang, H. X. Chen, D. Z. Xiong, X. D. Yu, F. Gao,
and J. Zhang, Acta Phys. Sin. (in Chinese) 57, 4840
(2008).

16. Y. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D.
Vredenbregt, K. Helmerson, S. L. Rolston, and W. D.
Phillips, Phys. Rev. Lett. 83, 284 (1999).

17. K. Banaszek and K. Wodkiewicz, Opt. Express 2, 169
(1998).

18. M. V. Berry and E. Bodenschatz, J. Mod. Opt. 46, 2139
(1999).

19. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J.
Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E.
Pritchard, Phys. Rev. A 51, R14 (1995).

20. L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian,
M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston,
and W. D. Phillips, Phys. Rev. Lett. 83, 5407 (1999).


